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In  order to model the evolution of a solitary wave near an obstacle or over an uneven 
bottom, the long-wave equations including curvature effects are introduced to 
describe the deformation and fission of a barotropic solitary wave pming over a shelf 
or an obstacle. The numerical results obtained from these equations are shown to be 
in good agreement with an analytical model derived by Germain (1984) in the 
framework of a generalized shallow-water theory, and with experimental results 
collected in a large channel equipped with a wave generator. Given the initial 
conditions, i.e. amplitude of the incident solitary wave, water depth in the deep 
region, and height of the shelf or the barrier, it  is possible to predict the amplitude 
and number of the transmitted solitary waves aa well as the amplitude of the reflected 
wave, and to describe the shape of the free surface at any time. 

1. Introduction 
The reflection of solitary waves from a plane, vertical wall has been studied both 

analytically and numerically (Su & Mirie 1980; Mirie & Su 1982; Fenton & Rienecker 
1982) and experimentally (Maxworthy 1976). In  a previous paper (Renouard, 
Seabra-Santos & Temperville 1986) we proposed both an analytical study, within the 
framework of shallow-water theory, and a numerical solution of a KdV equation 
modified to take account of viscous effects. We compared the analytical and 
numerical results thus obtained with experimental data. Agreement was found to be 
remarkably good between the number and amplitude of solitary waves generated by 
a paddle movement, and the propagation and damping of such waves, but some slight 
differences appeared in the neighbourhood of the wall when we analysed the reflection 
of a solitary wave from a plane, vertical wall. As in Maxworthy (1976), we were led 
to think that, locally, the characteristics of the fluid motion near the wall no longer 
fulfilled the conditions of the theory. The numerical resolution of Serre’s equation 
(Seabra-Santos 1985) appeared to  provide a way to overcome this difficulty, and will 
be generalized here to describe the phenomena occurring when an incident solitary 
wave passes over a shelf or an immersed obstacle. These numerical results will be 
compared with experiments. One of the most striking effects of the passage of a single 
solitary wave over a step is its fission into two or more solitary waves. This 
phenomenon can be described analytically (Germain 1984), and the number and 
amplitude of the solitary waves resulting from the fission of the incident solitary wave 
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aa well aa the amplitude of the reflected solitary wave can be predicted and compared 
with the experimental data. 

The first study of the consequences of the passage of a solitary wave above a bottom 
slope is probably that of McCowan (1894), who was only interested in wave breaking. 
The first report clearly indicating the fission of such a wave over a shelf waa given 
by Street, Burges & Whitford (1968). Madsen & Mei (1969) used approximate 
equations for long waves over an uneven bottom and the method of characteristics 
to show the disintegration of the incident wave into a train of solitary waves of 
decreasing amplitude, and they provided experimental data to support their con- 
clusions. Unfortunately their experimental facility did not allow them to observe the 
final stage of fission, and they gave no indication of a reflected wave. A more 
comprehensive study was provided by Goring (1978), using a much larger facility, 
which compared experimental results with three different models, namely a linear 
non-dispersive, a nonlinear dispersive and a linear dispersive theory. He showed that 
the nonlinear dispersive theory compared favourably with the experiments in the 
height, shape and propagation of the reflected solitary wave. Though mentioning the 
splitting of the single incident wave into a number of solitary waves over the shelf, 
in his conclusions Goring (1978) only mentioned (a) the nonlinear dispersive theory 
and also a description of wave propagation over the slope, and (b) the distinction 
between the distance for the dispersive effects to become important, and the distance 
for the nonlinear effects to become important. Regarding the disintegration of the 
incident wave, he computed the number and amplitude of the transmitted waves by 
the inverse scattering method, using the shape of the free surface near the step as 
initial data. The purpose of the present study is to provide another approach to this 
phenomenon, supported by numerous and precise experimental data. 

We shall introduce modified long-wave equations which take into account strong 
curvature effects, a generalization of the Serre (1953) equations for a channel with 
variable depth, which, for brevity, we shall call curvature effects including long-wave 
(CEILW) equations, in the following. We then solve them by means of an implicit 
finite-difference model. Next we describe the experimental facility and summarize 
the experiments done, and lastly we compare the experimental data with both the 
numerical results provided by the equations and the analytical results using a 
shallow-water theory by Gulli (1975), Germain (1984) and Kabbaj (1985). 

2. Curvature effects including long-wave equations 
Let us consider the two-dimensional movement of a perfect homogeneous fluid of 

specific maas p, initially at rest in a channel of uneven depth (figure 1). We choose 
a coordinate system where Ox coincides with the free surface at rest and Oy is positive 
upward, and define (u, v )  as the horizontal and vertical components of the velocity, 
q ( x , t )  as the elevation of the free surface, [(x) as the equation of the bottom, t as 
the time andg as the acceleration of gravity. The continuity and dynamical equations 
are 

ux+uy = 0 ( 1 4  

1 

P 
U,+U 'U ,+~ 'UY = --px 

1 

P 
v,+u*vx+v*vy = --py-g (14 
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where p ( x ,  y ,  t )  is the pressure, and the subscripts indicate a derivation with respect 
to either a space variable or time. The boundary conditions are given by 

(a)  the kinematic condition at the free surface 

u = !/t+u*rlx cv = B ) ,  

( b )  the dynamic condition at the free surface 

P = o  c v = r l ) ,  ( 2 b )  

(c) the impermeability of the bottom 

0 = u*cx cv = 4) .  ( 2 4  

We non-dimensionalize these equations, using tw characteristic length, celerity and 
pressure the depth in the deep region H, the critical phase speed Co = (gH)i,  and the 
pressure P, = pgH, 80 that new variables are defined by 

If we set p* = P+$, (1) and ( 2 )  become 

u, + up = 0, 

u,+uu,+vup = -p,*, 

v7+uv,+wp = -p;; 

= q,+uqa V = 7) ( 4 4  

P * = T  V==) (4b) 

v-U5,=0 (B=[). ( 4 4  
Let us w u m e  that the vertical movement of a particle is small compared with the 

horizontal movement, that is, we use the shaltow-water hypothesis, 80 that we can 
write u = u(a, 7 ) ;  then combining (3a)  and (4c) leads to 

80 that 
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condition (4a )  leads to the equation 

F. J .  Seabra-Santos, D. P .  Renouard and A .  M .  Temperville 

Evaluation of (5) at B = 7 combined with the kinematic free-surface boundary 

'17 + [U(T - Ella = 0, 

and (3c) together with (6), (7) and (8) yields 
(9) 

F = 6,JuT+uua)+u26~. 
In the same fashion, the integration of (3b)  between the bottom and the free surface, 
together with (1 l), leads to 

(~-E)(u,+uua)+[+(r-E5)9G+f(~-E)2F 

+ f ( ~ - E ) ' l a  = - ( q - E )  Ca[+(r-E)G+ F+ 11. (12) 

Let us now go back to the dimensional variables, and upon noting that h = T,J - 6 ,  
from (9) and (i2) we get 

h, + (hu), = 0, 

h ( u , + U U , ) + [ h 2 ( ~ + ~ + + ~ l ,  = -h6Z(g+$+fn (13b) 

( 1 3 4  

( 1 3 4  

9 = E&, + uu,) + u2Ezz, 
r = h(u: - UU,, - UZt) ,  

where u, 8, 5 are here dimensional variables. As can be seen from (5),  the vertical 
component of the acceleration of the particles at  the free surface is given by (f + q5). 
So one can say that (13) describes both the slow evolution of a wave over a horizontal 
bottom and the splitting of an incident wave into transmitted and reflected waves 
over a submerged obstacle or a change of depth. In other words, (13) describes the 
propagation of long waves while integrating wave curvature and topographical effects, 
and so can model the phenomena occurring during either the passage over an obstacle 
or the reflection of a solitary wave from a vertical wall, where the vertical acceleration 
of the free surface does seem to have a large influence (Maxworthy 1976; Renouard 
et al. 1985). Now if the bottom is horizontal (6 = - H ) ,  then 6, = g,, E 0, so that (13) 
becomes 

h, + (hu), = 0, 

r = h(ui - UU,, - u,,), 

(144  

u,+uu,+qh,+$h,r+$hr, = 0,  (14b) 

( 1 4 4  

which is the system of equations first obtained by Serre (1953) and later by Su & 
Gardner (1969). When f = 0, (14) is identical with the Saint-Venant equations or 
finite-amplitude shallow-water equations. Let us note that (14) (with f P 0) has as 
a particular solution the solitary wave described by 

K 
T = A sech2[~(z-ct+z,)], 



Transformation of a solitary wave over a shelf or isolated obstacle 121 

with K = [3A/4H( 1 + A/H)$, and c = [gH( 1 + A/H)]; .  Such expressions will be 
adopted to characterize the incident wave in our work. To study the phenomena linked 
with the reflection of a solitary wave from a plane vertical wall, Mirie t Su (1983) 
used the same equations aa (14), and adopted an implicit finite-difference model to 
solve them numerically. The numerical model that we used is inspired by them, but 
improved and modified in such a way that it can take into account an uneven bottom. 

3. Laboratory experiments 
3.1. Experimental facility 

In  order to study gravity waves, the Institut de MBcanique de Grenoble has some 
large channels, the largest, used for these experiments, being 36 m long, 0.55 m wide 
and 1.30 m deep. It is built entirely with glass panels so that there is excellent 
visualization of the phenomena occurring within it. It is equipped with a piston-type 
wave paddle, moved with a variable-speed motor. An electromagnetic clutch allows 
rapid starting and stopping of the paddle, while a crank-arm system, of adjustable 
eccentricity, allows the variation of the stroke of the piston. The amplitude of the 
paddle movement (2e) can be set between 15.6 and 40 cm, and the period of the 
movement T between 0.5 and 5 s. A paddle displacement in the positive (downstream) 
direction generates one or many solitgry waves followed by a dispersive tail ; a paddle 
displacement in the opposite direction will generate a dispersive wave. For the present 
study we need to have only one solitary wave of a given amplitude A, or rather of 
a given ratio A / H ,  at a certain distance from the paddle, say at some distance from 
the shelf or the obstacle. Previous experiments showed that, for a given depth H it 
is possible to choose values of 2e and T to obtain these conditions with great accuracy 
(Renouard et al. 1985). 

For the present study we set in the channel either a triangular obstacle, 14.1 cm 
wide at the bottom and 10 cm in height, or a shelf, 18 m long and 10 cm high. The 
wave generator was originally conceived to generate periodic sinusoidal waves and 
hence the paddle motion is not optimum for the study of solitary waves since it will 
always generate a tail with the desired solitary wave. 

In order to avoid any interaction between the solitary wave reflected from the shelf 
or the barrier and the incident tail, we placed a gate in the zone where the incident 
solitary wave is clearly separated from the tail for all experimental conditions, i.e. 
14 m from the paddle, and quickly dropped it after the incident wave had passed 
through. In  this way the incident wave, and the waves created by its paasage over 
the obstacle were the only phenomena occurring in the downstream part of the 
channel. The disturbances produced by the dropping of the gate were of much smaller 
amplitude than the solitary wave or even the tail. They propagated at most with the 
linear phase speed and were virtually unnoticeable for most experiments. Because of 
this, the useful length of the channel was reduced to 22 m, which created some 
difficulties discussed below. 

The paddle movements were measured using a linear displacement recorder. The 
variation in height of the free surface with time at a given point was recorded by 
seven resistivimetric probes. The precision of each of these probes waa about 0.1 mm. 
One of them, placed immediately upstream of the gate, allowed the determination 
of the correct time for dropping the gate after the incident solitary wave had 
completely passed by. The others were situated at various locations in the down- 
stream part of the channel. The origin of the downstream coordinate was chosen either 
above the centre of the obstacle or above the start of the step. The incident wave 
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Exp. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

H 
(cm) 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
25.0 
25.0 
25.0 
25.0 
25.0 
25.0 
22.2 
22.2 
22.2 
22.2 
22.2 
22.2 
22.2 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
18.1 
18.1 
18.1 
18.1 
18.1 
15.0 
15.0 

A, 
(cm) 
4.25 
6.80 
7.10 
7.50 
7.50 
9.70 
1.78 
2.57 
3.84 
5.75 
7.17 
7.40 
2.07 
2.73 
3.65 
4.17 
4.61 
5.16 
5.62 
1.63 
2.08 
2.43 
2.93 
3.65 
3.90 
4.36 
1.59 
2.07 
2.39 
2.69 
2.90 
1.62 
2.18 

At1 
(cm) 
4.95 
8.50 
8.85 
9.71 
9.68 

12.90 
2.22 
3.14 
4.74 
7.94 

10.34 
10.63 
2.75 
3.68 
4.93 
5.91 
6.48 
7.48 
8.10 
2.38 
3.08 
3.56 
4.30 
5.31 
5.73 
6.78 
2.38 
3.27 
3.67 
4.07 
4.49 

Break 
Break 

At* 
(om) 
0.82 
1.61 
1.74 
1.80 
1.82 
2.38 
0.70 
0.75 
1.16 
2.03 
2.47 
2.47 
0.88 
1.07 
1.41 
1.70 
1.88 
2.20 
2.29 
0.98 
1.09 
1.21 
1.56 
1.80 
2.06 
2.29 
1.11 
1.37 
1.50 
I .79 
1.92 
1.72 
2.18 

At8 
(om) 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.44 
0.28 
0.20 
0.34 
0.33 
0.51 
0.52 
0.52 
0.43 
0.56 
0.70 
0.68 
0.86 
1.10 

TABLE 1. Experimental results for the passing of a solitary wave over a shelf. H, depth in front 
of the shelf; A,, amplitude of the incident wave; A,, amplitude of the j t h  transmitted wave; A,, 
amplitude of the reflected wave. All amplitudes and depths are in cm. 

was meaaured at X = - 15H before the barrier and at X = -3.0 m before the shelf. 
We performed a total of 80 experiments which are listed in tables 1 and 2, where we 
indicate the depth in front of the obstacle H, the amplitudes of the incident wave 
A,, the reflected wave A,, and transmitted waves A, (here the subscript j denotes 
the j t h  transmitted wave). 

3.2. Study of wave propagation over a step (table 1) 
One incident solitary wave will evolve into at least two solitary waves ranked in order 
of decreasing amplitude and followed by a h a l l  dispersive tail. During this fission 
process there are often noticeable changes of amplitude, so that the measurement of 
this phenomenon is somewhat tricky. On the one hand, the amplitude of a 
transmitted wave must not be meaaured before the wave-sorting process is completed. 
But on the other hand, if the distance between the beginning of the step and the point 
of measurement is too large, viscous damping may be appreciable. Therefore, from 
all the available data records above the step, the amplitude of each transmitted 
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H A,  A, 
Exp. (cm) (cm) (cm) 

34 20.0 2.87 0.59 
35 20.0 3.40 0.63 
36 20.0 3.65 0.68 
37 20.0 3.92 0.63 
38 20.0 3.94 0.65 
39 20.0 5.07 0.68 
40 20.0 5.78 0.72 
41 20.0 6.45 0.92 
42 20.0 7.74 0.91 
43 18.1 2.60 0.52 
44 18.1 2.90 0.59 
45 18.1 5.30 0.71 
46 18.1 6.26 0.85 
47 18.1 7.20 0.88 
48 16.0 2.65 0.62 
49 16.0 4.03 0.69 
50 16.0 5.92 0.91 
51 16.0 7.00 1.04 
52 15.0 2.34 0.63 
53 15.0 3.86 0.70 
54 15.0 5.06 0.94 
55 15.0 5.09 0.96 
56 15.0 6.49 1.09 
57 13.3 2.67 0.76 

H 
Exp. (cm) 

58 13.3 
59 13.3 
60 12.5 
61 12.5 
62 12.5 
63 25.0 
64 25.0 
65 25.0 
66 25.0 
67 20.0 
68 20.0 
69 20.0 
70 20.0 
71 20.0 
72 15.0 
73 15.0 
74 15.0 
75 15.0 
76 15.0 
77 12.5 
78 12.5 
79 12.5 
80 12.5 

A, 
(em) 
3.89 
5.89 
3.20 
4.08 
4.87 
5.10 
7.40 

10.00 
12.20 
4.20 
5.86 
8.00 
9.90 

11.90 
2.96 
4.35 
5.81 
6.56 
8.40 
2.50 
4.75 
6.00 
6.30 

At 4 
(cm) (em) 

- 0.84 
1.20 - 
0.88 
1.07 - 
1.18 - 
4.80 - 
6.90 - 
9.30 - 

11.30 - 
3.86 - 
5.46 - 
7.38 - 
9.10 - 

10.80 - 
2.60 0.41 
3.80 0.60 
5.00 0.65 
5.60 0.80 
7.31 1.20 
1.95 0.60 
3.70 0.80 
4.85 0.95 
5.10 1.05 

- 

TABLE 2. Experimental results for the passing of a solitary wave over an obstacle. H, depth in front 
of and behind the obstacle; A,, amplitude of the incident wave; A,, amplitude of the transmitted 
wave; A,, amplitude of the reflected wave. All amplitudes and depths are in cm. 

solitary wave was measured on the record showing a fully separated solitary wave, 
which was the closest to the origin of the abscissa. Since for other experimental 
conditions a length of about 15 m was required for such a wave-sorting process, the 
whole length (18 m) was necessary for the complete study of the transmitted waves. 
But that left only 4 m between the gate and the step to study the reflected wave. 
Hence we were obliged to do two different sets of experiments: one for the study of 
the transmitted waves, for which the whole length of the step was needed; and one 
for which the step length was reduced to 6 m, in order to facilitate measurement of 
the reflected wave. 

However, with &gard to the amplitudes and the depth, the constraints were 
different for each of these studies. For the study of transmitted waves, the depth was 
chosen between 15 and 30 cm. For depths equal to or smaller than 15 cm, even the 
smallest waves generated by the paddle experienced breaking above the step. For 
depths larger than 30 cm, the sorting distance for the transmitted wave is longer than 
the available length of the step (18 m). The amplitude of the incident solitary wave 
was chosen so as to avoid breaking of the first transmitted wave over the shelf. Probes 
were situated every 3 m between X = -3.0 m and X = 15.0 m. For the study of 
reflected waves, the depth waa chosen between 12.5 and 20.0 cm. The upper limit was 
adopted in order to secure a good relative precision for the measurements, since the 
relative height of the step and the amplitude of the reflected waves vary propor- 
tionally. The lower limit was fixed by the appearance of vortices in the fluid near the 
step when the total depth approaches the step height. The reflected-wave amplitude 

5 FLM 176 
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was measured at the location where it appeared well separated from the incident 
wave, and which was the closest to the origin of the step to minimize the influence 
of viscous effects. For that purpose the probes were situated every other 3 m between 
X = -15 m and X = + 3  m. 

3.3. Study of wave propagation over an isolated obstacle (table 2) 
When the obstacle height H ,  became important vis-a-vis the total depth, i.e. 
H,/H = O( l),  a vortex appeared in the fluid immediately downstream of the obstacle, 
mainly when the amplitude of the incident wave was large. Such a vortex absorbs 
a large part of the available energy, and we verified that it affects the amplitude of 
the transmitted wave. The generation of such a vortex is not represented by the 
theoretical or numerical model of concern here, and we shall ignore it. It was easier 
to obtain experimental conditions that avoided such a vortex than those reported 
in 53.2. The transmitted wave essentially retained the amplitude of the incident wave, 
and recovered an equilibrium profile only a short distance downstream of the 
obstacle. I n  most of our experiments, the barrier was only a source of limited 
disturbances which did not appear to affect the evolution of the wave. None the less, 
a closer look revealed the existence of a reflected solitary wave, the amplitude of 
which increased with the relative height of the obstacle. For incident waves of an 
amplitude comparable with the obstacle height, even for incident waves of very large 
amplitude, we never noticed a breaking of the wave over or after the barrier. We 
limited our study to depths smaller than 25 cm, since as soon as the depth over the 
barrier waa larger than 15cm no reflected solitary wave was observed; this is 
explained by the fact that their amplitude would have been of the order of the 
amplitude of the dispersive waves generated by propagation over the barrier. The 
lower limit for the depth was 12.5 cm, since for smaller values a vortex appeared as 
noted above. The normalized amplitude of the incident wave for these experiments 
was kept in the range 0.2 < A,/H < 0.6. 

4. Comparison between experimental results and first-order shallow-water 
theory 

In  Germain (1971a, b;  1972) the basic hypotheses of a generalized shallow-water 
theory are explained. Such a generalization allows one to describe phenomena 
occurring at the start of a paddle movement or around obstacles, and over bottom 
topographies. This theory was applied to a solitary wave propagating over a barrier 
by Gulli (1975) and to a solitary wave propagating on to a shelf by Kabbaj (1985). 
They obtained analytical expressions characterizing the transmitted and reflected 
waves generated by an incident solitary wave. 

4.1. Solitary wave passing over a step 
Germain (1984) and Kabbaj (1985) provide the number n of transmitted waves as 
well as their amplitudes A, in terms of the amplitude of the incident wave A,, 
the depth of the deep water H and the depth over the step H,. In our notation the 
results are 

(i) for the transmitted waves 
A H  A = 2 ( M - j ) 2 ,  
Ai 
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FIGURE 2. Passing of a solitary wave over a step: number and amplitudes of the transmitted waves 
(AJA, ,  upper part) and reflected waves (A, /& lower part) with respect to the depth ratio (HJH). 

with the number of transmitted waves being 

n = [MI (largest integer < M); 

(ii) for the reflected wave 

Figure 2 expresses these results graphically: the abscissa is the ratio H J H  of the 
depth Hl over and H in front of the step. The upper part of the figure gives the ratios 
of the amplitude of the first twelve transmitted waves with respect to the amplitude 
of the incident wave (&/Ai), while the lower part gives the ratio of the amplitude of 
the reflected wave relative to the amplitude of the incident wave (AJA,).  

These theoretical results are supported by our experimental results, and we have 
verified that the number and amplitudes of transmitted waves increase with the 
relative height of the step, with similar results for the reflected wave. We also verified 
that there are always at least two transmitted waves and only one reflected wave, 
and that the amplitude of the second transmitted wave can be very small if the 

5-2 
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H = 30.0 cm 

1.2 

0.8 

o.6 0.4 1 
w V I  0.2 0 I 

0 0.1 0.2 0.3 0.4 
AIIH 

if 1 H =  2 2 . 2 m  

1.6 I 
I 

~~ 

1.4 

I .2 2 1.0 

0.8 
0.6 
0.4 

0.2 

0 0.1 0.2 0.3 0.4 
AiIH 

H =  18.1 cm 

I 
I .6 

1.4 I 

I .2 
5 1.0 

0.8 
0.6 

0.4 

0.2 

A1 

I 
I 
I 
I 
I 

I 
I 
I 

*0*w ; L4- I 

0 0.1 0.2 0.3 0.4 
AiIH 

2.0 1.8 1 H = 25.0 CIII 

1.4 1-i 

0 0.1 0.2 0.3 0.4 
A,IH 

2.0 1.8 1 H = 20.0 CIII 

0 0.1 0.2 0.3 0.4 

'KJ1Q 1 H =  IS.0cm 
1.5 % " 
i 3 - 5  

I .6 @ 
1.4 

1.2 2 1.0 [ O 0  

0.8 

0.6 0.4 [- 
"'- L 

0.1 0.2 0.3 0.4 0 
AiIH 

FIGURE 3. Passing of a solitary wave over a step: study of the transmitted waves. Comparison 
between the shallow-water theory results (solid horizontal lines) and the measured first ( x ), second 
(O), third (0) and fourth ( + ) transmitted solitary waves. 

relative height of the step is also small, i.e. H , / H  = O(1). Moreover, such results allow 
an understanding of the experimental difficulties described in the previous section. 

A comparison between the experimental data is given both for the transmitted 
(figure 3) and for the reflected (figure 4) waves. I n  figure 3 the dashed vertical lines 
indicate the upper limit for A,/H above which the first transmitted wave breaks. I n  
both figures one can see that the ratios of the amplitudes AJA,  or AJA, are 
practically independent of the normalized amplitude of the incident wave (AJH) ,  
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2.0 

1.8 

1.6 
1.4 

1.2 
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H = 18.1 cm - 
- 
- 
- 
- 

H = 20.0 an 
1.8 
1.6 

1.4 
1.2 

A. 1.0 

0.8 

0.6 
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FIQURE 4. Passing of a solitary wave over a step: study of the reflected wave. Comparison between 
the shallow-water theory results (solid horizontal lines) and the measured reflected wave ( x ). 

as predicted, and are in good agreement with the theoretical values. The slight 
dependence of AJA, on A,/H, apparent mainly on the first transmitted wave, can 
be explained as follows. 

The solitary waves of higher relative amplitude also have a smaller characteristic 
wavelength and hence their fission over the shelf is completed at a shorter distance 
from the step. Therefore the amplitude measurement must be performed closer to 
the step in order to avoid most of the viscous damping effects. Concerning the 
reflected wave, the slight decrease of AJA, with increasing A,/H, which can be 
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FIQURE 5. Passing of a solitary wave over an isolated obstacle: study of the transmitted wave. 
Comparison between the shallow-water theory result (solid horizontal line = amplitude of incident 
wave) and the measured transmitted wave ( x ). 

observed in figure 4, may be linked with the loss of energy due to vortices observed 
near the step when A,/H becomes important and tends to be stronger when A,/H 
or H ,  increases. One should note (figure 4) that, although the relative errors seem 
large, in fact, in absolute value they are of the same order of magnitude as the errors 
observed for transmitted waves. It is also of interest to note that the observed 
transmitted amplitudes are always smaller than the predicted transmitted ampli- 
tudes, but that the observed reflected amplitudes are always larger than the predicted 
reflected amplitudes. Although we have no justification for this, we suggest that it 
might be because the theory is limited to the first-order approximation, which might 
transfer too much energy to the transmitted wave. Perhaps higher-order 
developments would show a behaviour closer to the experimental results. 

4.2. Solitary wave passing over an obstacle 
The analytical results at  the first order of approximation obtained by Gulli (1975) 
are very simple: there is always only one transmitted wave whose amplitude is equal 
to the incident-wave amplitude, and no reflected wave. As a first approximation and 
for most practical purposes, it is what we observed experimentally. Only one solitary 
wave is recorded downstream of the obstacle, and its amplitude is of the same order 
of magnitude as the amplitude of the incident wave (figure 5). None the less, for 
H > 15 cm ( H ,  < f H )  the reflected wave is absolutely negligible. For H < 15 cm such 
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Comparison between the shallow water-theory result (solid horizontal line coinciding with the 
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a wave is observable, though of very small amplitude (figure 6). The appearance of 
such a reflected wave and the slight decrease of the transmitted-wave amplitude can 
be interpreted as higher-order effects, which have been neglected at the first order 
of approximation. Moreover, for the smaller depths, the vortex appearing after the 
obstacle is significant, and we observed that the decrease of the transmitted-wave 
amplitude was larger when this vortex appears. This would explain why the best 
result, when comparing experiments with this theory, were obtained when the depth 
was larger (HJH small). 

5. Comparison between experimental results and numerical results from 
the CEILW equations 

As previously mentioned, we adopted an implicit hite-difference model to solve 
the CEILW equations when the bottom waa uneven. If tested successfully against 
the experimental data, such a model could then be extended to study the effects of 
a continental shelf or a submerged obstacle on the propagation of an incident wave 
in the ocean, and its effect on the thermocline level. 

5.1. Solitary wave passing over a step 
Let us consider one particular experiment when the depth H was 20 cm, the step had 
a height of 10 cm, and an incident solitary wave of amplitude A, = 3.65 cm was 
recorded at X = - 3 m in front of the step. The numerical computation started (t = 0) 
when the crest of the incident wave was at X = - 3 m. The shape of this wave as well 
as the velocity distributions are given by (15) and (16) respectively. Figure 7 shows 
the shape of the free surface between times t = 0 and 10.74s. The vertical dashed 
lines with arrows indicate the positions of the recorders. We were obliged to introduce 
a distortion in our model, since a first computation, with a change of depth within 
one space-step of the grid of discretization (z = 6 cm) leads to high-frequency 
numerical disturbances at the free surface around X = 0. So we joined the two 
regions of different depths by a half-sinusoidal profile step stretched to 60 cm. Within 
the range of validity of the first-order shallow-water theory such a step profile 
distortion is legitimate. Since the equations used in the model in fact integrate 
third-order terms, one can expect slight differences between numerical and experi- 
mental results, and the experiments will show some discrepancies. 
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FIGURE 7. Passing of a solitary wave over a step. Numerical study of the shape of the free surface 
between times t = 0 and 10.74 8.  A, = 3.65 cm ; H = 20 cm ; H ,  = 10 cm. The vertical dashed lines 
indicate the positions of the recorders for comparison with figure 8. 

We can see (figure 7) that the incident solitary wave first grows in amplitude, then 
broadens and decreases in amplitude before splitting into two transmitted waves 
followed by a small train of dispersive waves. A reflected wave again followed by a 
tiny dispersive wave was also generated. Such a result is in perfect agreement with 
the analytical predictions of Germain (1984), but moreover provides us with the shape 
of the free surface at each time and a more accurate description, since the equations 
represent the phenomena to the third-order of approximations in (AJH).  This is 
illustrated by comparing the experimental data and the computed results at the 
various locations (figure 8) .  Let us recall that the computations start ( t  = 0) when 
the crest of the incident wave is at X / H =  - 15 in this example ; hence the upper figures 
( X / H  = -45, -30, - 15) show the reflected wave, and the lower figures show the 
incident and transmitted waves. The time is positive leftward in this figure as well 
as in figure 10. We can verify that, beside a slight phase shift and a small difference 
in amplitude, the recorded and numerical curves are practically identical. But the 
experiments show the existence of a third transmitted wave of very small amplitude, 
also predicted by Germain (1984) as one can check on figure 2 with H J H  = 0.5, and 
this does not appear in the computations. Very likely the distortion introduced in 
the shape of the step in the numerical model is responsible for this slight disagreement. 
Many other comparisons between experimental data and numerical results show the 
same good agreement, and thus enable us to affirm that our model of the CEILW 
equations allows a practical way of computing the shape of the free surface as well 
as the velocity distributions each time an incident solitary wave passes over a shelf. 
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FIQURE 8. Paasing of a solitary wave over a step. Comparison between the computed (dashed lines) 
and recorded (solid lines) surelevations of the free surface of various locations before and after the 
step (see figure 7 for experimental conditions and probes’ location). 

5.2. Solitary wave over an obstacle 
The qualitative agreement noted above also holds true when we compare the 
experimental data with the computations analysing solitary-wave evolution over an 
obstacle. Here again, for computational purposes it was necessary to choose a 
smoother shape than the triangular obstacle actually used in the experiments. The 
numerical scheme was very sensitive to abrupt changes of bottom slope, hence a 
sinusoidal profile was used to approximate the triangular obstacle. Nevertheless, such 
a modification proved to introduce no major disagreement with the observations, 
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FIGURE 9. Passing of a solitary wave over an isolated obstacle. Numerical study of the shape of 
the free surface between times t = 0 and 7.34 s. A, = 10.0 cm ; H = 25 cm; H ,  = 10 cm. The vertical 
dashed lines indicate the positions of the recorders for comparison with figure 10. 

thus confirming the validity of the shallow-water hypothesis in the study of such 
phenomena. 

Figure 9 shows the computed shape of the free surface at various times between 
t = 0 (X/H = - 15) and t = 7.34 s. Gulli (1975) predicted a transmitted wave equal 
to the incident wave, and no reflected wave. The computations, in agreement with 
the experimental data, show that there was a slight change of amplitude of the 
transmitted wave which was accompanied by a train of dispersive waves, and a small 
but noticeable reflected solitary wave also accompanied by dispersive waves. 

Figure 10 provides a direct comparison between the experimental and numerical 
data, and one can note the very good agreement between them. 

Thus these experiments, while plainly supporting the analytical results given by 
Germain (1984) in the framework of the shallow-water theory, allow us to verify the 
accuracy of a numerical model using the CEILW equations. The ability of such a set 
of equations to describe the phenomena involved in the propagation of a solitary wave 
over a step or an isolated obstacle is illustrated here. It is anticipated, therefore, that 
the CEILW equations will provide a better description of the influence of isolated 
or semi-infinite bottom topography on the evolution of solitary waves in the vicinity 
of a continental shelf. They could also be extended to describe the generation of 
internal solitary waves by baroclinic incident waves passing on to a shelf (cf. 
Djordjevic & Redekopp 1978). 

The authors wish to express their gratitude to Professor J. P. Germain for the 
many fruitful discussions and suggestions. The experiments have been carried out 
with the valuable help of Michael and Stanislas Kwiatkowski and P. Licari. 
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REFERENCES 

DJORDJEVIC, V. D. & REDEKOPP, L. G. 1978 The fission and disintegration of internal solitary 

FENTON, J. D. & RIENECRER, M. M. 1982 A Fourier method for solving nonlinear water-wave 

GERMAIN, J. P. 1971 a Sur une ghnhralisation de la th6orie des mouvements en eau peu profonde. 

waves moving over two-dimensional topography. J. Phys. Oceunogr. 8, 1016-1024. 

problems: application to solitary-wave interactions. J. nuid Mech. 118, 41 1-443. 

C. R. A d .  Sci. Parie 273A. 1093-1096. 



134 

GERMAIN, J. P. 1971 b Sur le caracGre limitk de la th6orie des mouvements des liquides parfaits 
en eau peu profonde. C. R.  A d .  Sci. Paris 273A, 1171-1174. 

GERMAIN, J. P. 1972 ThBorie g6n6rale des mouvements d’un fluide parfait pesant en eau peu 
profonde de profondeur constante. C. R.  Acad. Sci. Paris 274A, 997-1000. 

GERMAIN, J. P. 1984 Coefficients de rkflexion et  de transmission en eau peu profonde. Imtytd 
Budownictwa Wodnego, Gdansk, Rozprawy Hydwtechniezne, Rep. No. 46. 

GORING, D. C. 1978 Tsunamis - the propagation of long waves onto a shelf. California Znetitule 
of Technology, Pasadena, Rep. KHR-38. 

GULLI, L. 1975 Etude du passage d’une houle en eau peu profonde sur une barrihre verticale 
immergBe. ThBse, Universitk Scientifique et MBdicale de Grenoble. 

KABBAJ, A. 1985 Contribution a 1’6tude du passage des ondes de gravitk et de la gBn6ration des 
ondes internes sur un talus, dans le cadre de la thBorie de I’eau peu profonde. ThBse, Universitk 
Scientifique et  MBdicale de Grenoble. 

F. J .  Seabra-Santos, D.  P. Releouard and A .  M .  Temperville 

MCCOWAN, J. 1894 On the highest wave of permanent type. Phil. Mag. 38, 351. 
MADSEN, 0.5. & MEI, C. C. 1969 The transformation of a solitary wave over an uneven bottom. 

MAXWORTHY, T. 1976 Experiments on collisions between solitary waves. J. Fluid Mech. 76, 

MIRIE, R. M. & Su, C. H. 1982 Collisons between two solitary waves. Part 2. A numerical study. 
J .  Fluid Mech. 115, 475-492. 

RENOUARD, D., SEABRA-SANTOS, F. J. & TEMPERVILLE, A. 1985 Theoretical and experimental 
studies of the generation, damping and reflexion of a solitary wave. Dyn. Atmos. Ocean 9, 

SEABRA-SANTOS, F. J. 1985 GBnBration, propagation et &flexion des ondes solitaires. ThBse, 

SERRE, F. 1953 Contribution a 1’6tude des Bcoulements permanents e t  variables dans les canaux. 

STREET, R. L., BURQES, 5. J. & WHITFORD, P. W. 1968 The behavior of the solitary waves on 

Su, C. H. & GARDNER, C. 5. 1969 Korteweg-de Vries equation generalizations. 111. Derivation 

Su, C. H. & MIRIE, R. M. 1980 On head-on collisions between two solitary waves. J. FZuid Mech. 

J .  Fluid Mech. 39, 781-791. 

177-1 85. 

34 1-358. 

Universitk Scientifique et MBdicale de Grenoble. 

Houille Blanche, 374-385. 

a stepped slope. Stanford University Tech. Rep. 93. 

of the Korteweg-de Vries equation and Burgers equations. J. Math. Phys. 10, 536-539. 

98. 509-525. 


